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1. INTRODUCTION

Various mathematical models exist for the purpose of re-

presenting the anomalous gravity field of the Earth: integral

formulas, series of harmonic functions, etc. Due to the harmonicity

of the underlying anomalous potential outside the Earth's surface,

the integral kernels and the solid spherical harmonics are different

from zero almost everywhere; spherical harmonic representations

have, in addition, the following disadvantages: the solution reacts

globally to local changes; in order to represent the short-

periodic part of the spectrum, the series development would require

a very high degree; although spherical harmonics are evaluated by

the use of recursion formulas, a series development of that kind

remains an expensive task. Low degree spherical harmonic coefficients

are known to permit a simple physical interpretation in terms of

mass, coordinates of the center of gravity, moments of inertia,

etc.; for higher degrees no simple physical interpretation is

known. Its determination is possible without knowing anything

about the mass distribution inside the Earth. The price that has

to be paid for this ignorance is the global behavior. Neither

the numerical evaluation of integral formulas nor the evaluation

of a long harmonic series are adequate means for fast (real-time)

and flexible (local) representations of the gravity field. The

cause of the gravity field, the mass distribution inside the Earth,

is not transparent either in such kind of representations.

Recently two virtually quite different gravity field repre-

sentation techniques are being developed, which will possibly

replace (but for sure supplement) existing techniques:

a) The finite element representation of the gravity field outside

the Earth. This method is extremely powerful as far as the fast

prediction of gravity field quantities is concerned; it is based
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on functions with local support and therefore, the represertecd,

anomalous potential is not strictly harmonic; a combination with

spherical harmonic solutions seems to be very difficult; there

is practically no relation to the mass distribution inside the

Earth.

b) The mass model representation of the anomalous gravity field

which, at the present state of the art, is restricted to its

simplest form, the point mass models. This approach towards the

cause of the gravity field is at the same time an approach of

geodesy and geophysics. The relation of the model to the physical

reality is transparent, geophysical evidencies in terms of geo-

logical structures can be easily implemented into the model. The

harmonicity of the represented anomalous potential is guaranteed.

The reciprocal distance and its derivatives provide the simplest

possible relation between the data (point masses) and any derived

gravity field quantity. Due to the global support of the reci-

procal distance, all point masses contribute to the prediction of

a single quantity; however, the remote zone effect can be used

advantageously to reduce the number of actually used point masses.

The relation between point masses and harmonic coefficients of

the anomalous gravitational potential is straightforward and

simple.

There is of course an essential drawback in the application

of this technique: theoretically there exists an infinite number

of mass distributions which are compatible with the observed

gravity field. From geophysical evidences we know the main features

of the density distribution. We can make a virtue of necessity

and select a solution which is both simple and geophysically re-

levant. As far as the distribution of point masses is concerned,

we strongly emphasize the importance of regular patterns. A proper

design of the data pattern can reduce the calculation efforts

dramatically if the algorithm is sophisticated enough to realize

the data geometry.
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Point mass models wi.l be determined primarily on the basis

of harmonic coefficients and/or surface mean gravity anomalies.

In order to get an idea about the relation between these quantities,

we have to start at the very beginning and investigate the re-

sponse of essential statistical quantities of the anomalous gravi-

tational field to changes in the spatial point mass model arrange-

ment. Statistical models of continuous mass distributions provide

important insight from a theoretical point of view, an investigation

of models of discrete distributions in terms of point masses is

indispensable from a practical point of view. In the latter case

the enormously powerful tool of frequency domain methods on the

sphere is a prerequisite for serious model calculations. The

variation of the variance and correlation length of a homogeneous

and isotropic gravity anomaly covariance function, generated by

mass distributions in various depths, is discussed in detail. For

discrete distributions the relation to harmonic coefficients of

the anomalous gravitational potential is studied; guidelines for

actual computations, using the concept of Fast Fourier Transform

on the sphere, are given. Since a mass model should reproduce as

close as possible the power per degree of the anomalous gravitational

field, emphasis is put on the numerical estimation of degree

variances. The actual calculation of a point mass model from real

world data will be the subject of a forthcoming report.
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2. DEPTHS OF ANOMALOUS MASS DISTRIBUTIONS AND THE GRAVITY

ANOMALY COVARIANCE FUNCTION

The essential statistical properties of the gravity

anomaly field can be described by a few parameters, tne variance

Co , the correlation length , and the variance of the horizontal

gravity gradient, Go . The latter shows a strong response to

topographical and local density anomalies; the correlation length

and the variance are much less affected by local anomalies and

should therefore respond to deeper density anomalies. It is of

primary concern to know the dependence of these two quantities

on the depth of the mass point level D

In order to investigate this problem, let us start with a

highly unlikely but nevertheless very instructive case. we assume

a continuous mass distribution at the depth D below the surface

of the mean terrestrial sphere, with zero average (positive and

negative density anomalies), and a white noise covariance function;

the center of gravity is supposed to coincide with the origin of

the coordinate system. Needless to say, this model is far from

reality; it is a ,ery pessimistic model insofar as the anomalous

masses are assumed to be uncorrelated. In the following we shall

investigate, how the gravity anomaly covariance function at mean

sea level responds to that white noise mass distribution at depth

D.

The disturbing potential T is given by (Heiskanen and

Moritz, 1967, p. 5)
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T(P) do(Q) (2.1)
T(P) S j(pQ)doQ

a

with G .......... gravitational constant,

£ .......... distance (P,Q)

do .......... element of solid angle

uda. ........ element of anomalous mass.

With

£2 = r + (R-D) 2 - 2r(R-D)cosp

and

r= r - (R-D)cosp

the radial derivate of T at r = R is obtained by

3T(P) G [R- (R- D)cosp ]u(Q)r=-Gda (Q) (2.2)3r r=R £(P.Q)

with

R ... mean earth radius,

D ... depth of mass anomaly layer,

... spherical distance

Both (2.1) and (2.2) describe a linear system with input u and

output T and aT/ar , respectively; the integral kernel Gz- I

and -G[R- (R-D)cos ] Z-3 , resp., is the corresponding system's
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impulse response. Due to Lg = -jT/3r - 2T/r , the impulse

response of the linear system with input and output _g

is equal to G-3 1 R- (R- D)cosy - 2z2/RJ

In order to derive the gravity anomaly covariance function

C from the (white noise) mass anomaly covariance function Cgg

we have to know the system "function" which is nothing else than

the infinite vector of the integral kernel's eigenvalues. The

eigenvalues \ of the isotropic integral kernel G.-3LR-

- (R- D) cosy - 2z/R i equal its projection onto the set of Le-

gendre polynomials, multiplied by 21

I

= GK-3'R- (R- D)t-n2zRP(t)dt (2.3)
-1

with t = cosy and P denoting the Legendre polynomial ofn

degree n (MUller, 1966, p. 20). The integral can be solved

for arbitrary n by representing Z-1 and Z-3 in terms of a

series of Legendre polynomials, and observing the well-known re-

currence and orthogonality relations. A much simpler way is to

consider the linear system with input and output Lg as a

linear system in cascade, consisting of two linear subsystems;

the output of the first system is input to the second one. Here

the first system is represented by equation (2.1), the second

system is simply the boundary condition

= 3T- 2T (2.4)

ar r

The cascade system function equals the product of the individual

system functions (Papoulis, 1968, pp. 50, 51). System 1 (eq. 2.1)

has eigenvalues
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= 2,rG -IP (t)dt (2.5)
nn

expressing .L-1 in terms of the series

9. n
n=O n

with ,: = i - , and observing the orthogonality relations of

Legendre polynomials <P n, P > =6 n 2/(2n+ 1) , we obtainnm n,

_( 4-rG (

n R(2n + 1)

System 2 (eq. 2.4) has eigenvalues

(2) _ n- 1 (2.6)
n R

(Heiskanen and Moritz, 1967, p. 97); therefore the cascade eigen-
(1) ' 2)values (Cascade system "function") are given by , =n n n

ri ri

4 - n- n (2.7)
Rn 2n+ 1

We have assumed that the mass anomalies are uncorrelated

(white noise); the corresponding covariance function is

C (t) = M 06(t- 1) (2.8)
18i



with the variance M0  and the Dirac distribution 6(t) Expres-

sing C in terms of a series of Legendre polynomials,

C (t) = W P r(t)
2

we obtain with (2-8) the degree variances in

M) 1 5(t-1)P (t)dt =--n 2n+ 1
-1

which reduces, due to the reproducing property of 6(t) , to

= - (2n+ 1) . (2.9)

{' } is the power spectrum of the white noise anomalous mass

distribution. The power spectrum {g ni of the gravity anomaly

field is then given by

g r f4.G) 2 MO (n-1) 2 azn (2.10)
n R--J 2 2n+1

and the gravity anomaly covariance function by

C (t) gnP(t) . (2.11)gg 2
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The behavior of a2n(n- 1)2/(2n+ 1) is graphically represented
in Fig. 2.1a,b. The area below the curves is very closely rela-

ted to the total variance C (0) ; it is quite obvious thatgg
the variance drops dramatically with increasing depth D . (Note
that for all curves a common factor (4nG/R2)2- MO/2 = I has been
used.) The maximum contribution to the variance decreases towards

the low degree with increasing depth.

60

(a)

D = 100 km

D = 50 km *
40D

=~~ =0 20 km"
+ D = 10 km

~C'4

20 ,20

0 400 800 1200

degree n

k J
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(b)

D = 1000 km

D D= 500 km

I /100 km

Io'

0 40 80 120 [60 200

degree n

Fig. 2.1ab Gravity anomaly degree variances due

to a white noise anomalous mass distri-

bution at various depths D ;

(4nG/R2 )2 • Mo/2 = 1 has been assumed.

The simple form of the gravity anomaly degree variances (2.10)

allows the variance to be represented by a closed expression.
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Observing

(n-) 2 . n 5 9 1
2n+ 1 2 4 42n+ 1

2n= 1 < 1

n=o

(Ryshik and Gradstein, 1963, No. 1.231, p. 24) and noting that

2n d ( n = 0"
n=0 n=O

2.
2~ 1 a2nda = I 1 +

n=O 2n+ I n=O

we obtain the closed expression

__ 1 14a2 10
C (0) M G in -+-a 8 . (2.12)99(O = R L0 <Z (1 - a) -

For moderate values of D (D 100 kin) , the variance C (0) can

easily be shown to be approximately proportional to D- 2

gg(0) const. (2.13)

With other words, the gravity anomaly variance due to a white

noise anomalous mass distribution at depth D decreases with the
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square of the depth - a very remarkable result. Consequently, approx-

imately the same gravity anomaly variance at zero level is genera-

ted by two anomalous mass distributions at level D I , and DZ ,

if the corresponding mass anomaly variances M1  and M2 benave

like

2
M D,

Therefore, we conclude that the ratios Mi/D_ must be selected

properly, if the gravity anomaly field's power is to be reproduced

by mass anomaly distributions at various depths.

Fig. 2.2a,b show the actual gravity anomaly (normalized) co-

variance functions, produced by white noise anomalous mass distri-

butions. It is obvious that the correlation length increases

i.00

(a)

0.75

C 0.50

D =100 km
z

0.25

CC) o D =50 km

D =0 km D 20 km D= 30km

0 .0 0 , 1 1 1 , 1 ( I I , I I I I

0 40 80 120 160 200

OISTANCE 1KM)
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1.00

(b)

c 0.75

0
Z

a)0.5so
M

U-i

Z D 1000 km
- 0.25

D -500 km

D = 100 km

0.00 I I I I I ,

0 400 800 1200 1600

OISTRNCE (KM)

Fig. 2.2a,b Gravity anomaly covariance functions

at sea level due to a white noise

anomalous mass distribution at various

depths D ; the covariances are normali-

zed to C (0) = 1
gg

with increasing depth D ; it is less obvious that depends

almost linearly on D (at least for moderate values of D) with

a proportionality factor close to 3/2,
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D (2.14)

From these figures we conclude that the global gravity anomaly co-

variance function with a correlation length of about 45 km cannot

be generated by mass anomalies, located below 30 km , alone; shal-

low mass anomalies must considerably contribute to the observed

45 km correlation length. The topographic masses and near sur-

face mass anomalies alone, vice versa, can hardly account for a

correlation length of 45 km. The problem of relating the known

gravity anomaly field to unknown mass anomalies is a (difficult)

matter of tuning our sensors to proper frequencies. This delicate

situation has been described best by Alfred Wegener (1929):

"We are like a judge confronted by a defendent who declines

to answer, and we must determine the truth from the circumstancial

evidence".
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3. DISCRETE POINT MASSES AND CORRESPONDING COVARIANCE

FUNCTIONS

An anomalous mass distribution represented by a white noise

covariance function as investigated in the foregoing chapter,

provides insight into the relation between anomalous mass and

anomalous gravity. That highly artificial case is quite unlikely

to be met in real world environments. The concept of discrete

point masses is not very realistic either as far as geology is

concerned; however, t-u geodetic goal is not to model geological

features adequately ind accurately, but to find an easy, fast and

simple way to model the external anomalous gravity field; point

masses present themELi.es as one of its simplest representations.

Moreover, using point masses at discrete points does not necessarily

mean that masses ar; concentrated at points, since the gravity field

of a point mass is not distinguishable from that of a spherically

symmetric mass distribution. Therefore, we could as well think in

terms of a continuous anomalous mass distribution which is such

that it can be uniquely described by a point mass model. In this

chapter we are primarily concerned with the gravity anomaly co-

variance function which is generated by a discrete distribution of

point masses.

Let us assume that I point masses {w1}, i = 1, ..., I

are given at the points {Qi , i = 1, ..., I which are located on

a concentric sphere with radius R- D ; we assume furthermore that

the gravitational constant G is already contained in u. The
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potential generated by these point masses is trivially given by

T(P) = Kz (3.1)

i=l Z(P,Q.)

where I(P,QL) denotes the spatial distance between the calcula-

tion point and the mass point. On the sphere r = R , T can be

represented by a Fourier series

T(P) = m (P) (3.2)T (P)= nm nm

n0O rn=-n

where inm denotes the orthonormal set of spherical harmonics

and a the corresponding Fourier coefficients given bynm

= <T,-nm = j T" (P)dc(P) (3.3)
am =k,>.-- ri T( nm (33

Using the representation (3.1), we obtain for the coefficients a

I nm (P)
a = ri do(P) . (3.3)'

nm 4niii X(PQ)

Taking into account the representation of the harmonic function
.-I in terms of a Fourier series (Heiskanen and Moritz, 1967, p. 33)
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r r
-I (PQ i ) = R o r+l O rs(P) rs(Qi) (3.4)

r=O s=-r

with -1- , and using the orthonormality relations of the

fully normalized spherical harmonics

<si ' > - (P)s (P)do (P) = 6 6
nm' rs 4r f Tnm (p-rs nr ms

0

(6nr ... Kronecker-symbol), the integral in equation (3.3)'

reduces to

4- () do(P) = (Q (3.5)
TT Z(P'Q Ri)+Y n

and the Fourier coefficients assume the simple form

n I
nm R 2n+l i~nm(Qi)

let us repeat: a is the Fourier coefficient of the potential,nm
generated by point masses {} = {P(Qi) , i = 1, ... , I

Denoting by

: -(3.6a)
R
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the individual potentials, the coefficients a,, are given by

f -- -im (3 3)"arim = 2n--- i m(Qi
2n+1 i

and the point mass generated potential by

I n n
T(P) =i KL 2n+ --- rim(P)nm(O i

n=1 2n+ m=-ni

At this point it is very instructive to consider the special case

of D approaching R ; in other words, we investigate equation

(3.1)' for the extreme case of all point masses concentrated at

the origin of the coordinate system. As a matter of fact, the

corresponding potential should reduce to that of a single centered

mass point

I

GM= " -

It can be easily shown that

limi n = lim11- = o
D-R D-R RI n,O

all powers of a vanish apart from power Zero; therefore, only

a0 0 is different from zero and
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T(P) = a0 0 = - GM
i~ i R

is the corresponding potential as anticipated.

Transition to gravity anomalies.

The gravity anomaly field at sea level is related to the

anomalous potential through a convolution (Stokes and inverse

Stokes formula); the corresponding relation in the frequency

domain is given by the well-known product (Heiskanen and Moritz,

1967, p. 97)

n-IAg =- Tn (3.7)

Therefore, the Fourier coefficients b of the gravity anomaly

Fourier series

Ag(P) = b n n (P) (3.8)L nm nm

are related to the Fourier coefficients of the anomalous potential

through

n-i a (3.9)
nm R nm

and with
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= -
=  

, (3.6b)
R Rz

the coefficients are obtained by

ni n- I
"m n+1 - . (Qi) (3.10)

i=1

Consequently, the gravity anomaly at r = R is represented by

I n) = Ori n-i (P); (QIg (P) = . I 2n+1 - nm nm
i=nO m=-n

or, considering the decomposition formula (Heiskanen and Moritz, 1967,

p. 33)

n

ri (cOsPQ) 2n+1 ri (P) (Q) (3.11)

even simpler by

I r =
i=1 ni=O P'-i

~gP x n1P cSi ) .. 8)' .



21

The gravity anomaly degree variances.

In order to study the statistical characteristics of tne

gravity anomaly field, generated by a finite number of point

masses, we need to know the power of the field distributed over

all frequencies (degrees) n ; for a specific n this power is

denoted degree variance of degree n and given by (Heiskanen and

Moritz, 1967, p. 259)

n
C = 7 ru (3.12)

With b given by (2.10), the degree variances can be written
nm

explicitly

c n an n l l -i-nm(Qi)

M=-n i L

or, interchanging the sequence of summation,

( n n - 1 ) 2  1 1 I = n

n2n+l) Ijlj=L rim I rim

The last sum represents, apart from the factor (2n+l) , the decom-
position of the Legendre polynomial Pn into fully normalized

spherical harmonics (eq. (3.11)); therefore, c reduces to

C 2n (n-i) 2 I U _(

n n ri (cos2 ne) V (3.13)
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The double sum equals the quadratic form

I I (o (3.14)

with

=T ( (3.13a)

and the symmetric matrix

A n = P (cos ~j 1), P  (cos ~l ) ' , p  (cosT I 1)

Pn(COS"PI, ), P n ( c O s PI , 2), P ( c Os YI , I )

(3.15b)

The matrix A can be considered a covariance matrix derivedn

from the covariance function C(') - P (cos,) , with elementsn

of A depending on the mutual spherical distance between the
individual point masses. As a consequence, An has only posi-
tive and zero eigenvalues for n > 0 and as a matter of fact,
A _0. This property guarantees the non-negativity of then1
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ICn I which, in turn, represents a homogeneous and isotropic gravity

anomaly covariance function, derived from a finite set of point

masses, in the frequency domain,

e2n (n-1) 2 =T -Cn = 2n+l - A n ( 3.131 '

The corresponding covariance function of gravity anomalies, at zero

level, is obtained through (Heiskanen and Moritz, 1967, p. 256)

CC 2n(n-1)2  TC(w) = 2n+l = AuP (cosP) (3.16)n=2

its spatial extension can be easily derived by covariance propa-

gation in the frequency domain, using the upward continuation

operator applied to gravity anomalies (Heiskanen and Moritz, 1967,

pp. 88-89)

0, 2ri(n-1)2  I R2  rn+2=T
C(PQ) = n=2 2n+1 rprQ) P n PQ

The product aR equals the radius of the point mass sphere

RD R -D

LR =I- R= R- D = RD

and (3.17) can be simplified to become
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(n-l)- R2  )n+ T

C(P,Q) nn-2 1 T A WP (cOs Q (3.17)'
C(,)=2n4-1 (rprQ ri fl P

The corresponding spatial covariance function of the anomalous

potential is given by

0( R 2  n*

K(PQ) 0 7 L "D 2An P (cosp ). (3.18)
K= L 2n+1 irpr n n PQ

n=2 1 QPj

It is both interesting and instructive to compare the gravity

anomaly degree variances (2.10) with (3.13)' : equation (2.10) has

been derived from a white noise anomalous mass model at depth D

eq. (3.13)' from an (arbitrary) discrete distribution of a finite

number of point masses located at the same depth D . The common

properties are a) the transition from mass to gravity, and b) the

upward continuation of gravity; the combination of both is repre-

sented by the common degree-dependent factor zW(n-1)'/(2n+1)

the most striking difference is the degree-independent multiplication

factor

14-,G) 2 MO
2

in (2.10) which is due to the introduced white noise model of the

anomalous mass distribution, and the degree-dependent multiplication

factor 'TA n in (3.13)', which is determined, for each n , by

the actual point masses. It can be shown that (3.13)' converges

to (2.10) if the number of point masses becomes infinite with no

correlation between neighboring point masses. Consequently, (2.10)

is a special limit case of (3.13)' and this is why we investigated

it before. (3.13)' is general and can be used with real point mass

data.
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4. GRAVITY ANOMALY DEGREE VARIANCES DUE TO REGULARLY

DISTRIBUTED POINT MASSES

Gravity anomaly degree variances represent the power of the

gravity anomaly field broken up by degree. A distribution of point

masses (at a certain depth D ) yields a gravity anomaly field at

zero level which can be statistically described by its degree

variances. For low to moderately high degree variances are known

from observations. Any physically meaningful point mass model has

therefore to meet an essential requirement: it should generate

gravity anomaly degree variances which are close to the "observed"

degree variance model. Equation (3.13)' relates discrete point

masses to corresponding gravity anomaly degree variances.

Given a discrete point mass distribution, the very problem

of calculating degree variances consists obviously in the numerical

calculations of the quadratic forms.

=TLiA
n

This harmless-looking expression poses severe problems if the

point mass distribution is irregular and if P is large: the

elements of each matrix A are Legendre polynomials of degree

n , evaluated for the mutual spherical distance between the data

(point masses),

a~n ) =P (cos )Sj n '"
a(n) Aa1. n csji~

= A
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therefore, the calculation of each element a.. requires one

spherical distance calculation. The recurrence relation of

Legendre polynomials (Heiskanen and Moritz, 1967, p.23)

P (t) 2n t p (t) - P (t)

n n n-I n n-2

carries over to the matrices A,

A 2n-1 A mAn_ n An n 1 n-1 n n-2 (4.1)

where " denotes the Hadamard product of matrices,

C A 2 B cij aij. bij.

Despite of the pleasant feature of A (note that the sphericaln
distances have to be calculated only once -- in order to set up

the matrix A, ), a calculation of the quadratic form uTA
becomes prohibitive for irregularly distributed point masses,

even if its number I is as low as a few hundred.

Is our problem surmountable? Yes, it is. The picture changes

dramatically if we assume a regular distribution of the point

masses at the grid points of a geographical grid. In this case we

can take advantage of the structure of A , transform the quadratic

form into the spectral domain using fast Fourier transform methods,

and apply Parseval's theorem. This method is not new to geodesy;

the interested reader will find a detailed treatment of such kind

of problems in (Heller et al., 1977) and (Colombo, 1979). Therefore,

we restrict ourselves to a comprehensive and somewhat simplified

presentation of the procedure.
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Assume J point masses to be distributed with constant

spacing along a single parallel. The corresponding discrete

Fourier transform matrix F is given by (Heller et al., 1977,

p.23)

-i21r

F=[F] = -- e Jm o o j,m : J - 1 (4.2)

with the imaginary unit i = '-1 . The discrete Fourier trans-

form vector of the vector of point masses will be denoted by X

and is obtained through the linear transformation

X =F ,(4.3)

where " " denotes the complex conjugate transpose. As a matter

of fact X is in general a complex vector; it consists of a real

(X° ) and imaginary (X1 ) part

X = X0 + ix'

with elements

2i

X ~ COSTi jMi 1 J-1

-,m = O,,...,J-i . (4.4)

X J O sin- im

=T =

If A would be the unit matrix I , the norm P TU can easilyn*

be shown to be equal to X X , which is the corresponding norm

in the frequency domain,
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T XX ;(4.5)

this is the discrete form of Parseval's theorem (Cooley et al.,

1967). The proof is straightforward: we introduce (4.4) in (4.5)

and obtain

J-1 J-1 J-1 i2Tr. J-1 i2n.,
X*X = IX 2  -o m 7.,O oj

J-1 J-1 I J-1 i2ir i2-r.
m=Om

j=0 j -=O .~M=O

The expression between the parentheses equals 6 ( ...

Kronecker symbol) according to the orthogonality relation of

exponentials (Brigham, 1974, p.99),

1 J-1 i2r i2,
- e Jme-T' m = (4.6)
m=O

and the identity

j-1
=x 2 =T1

j-O

follows immediately.
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Our problem is a bit more complicated: the matrix A isn

not a unit matrix, but a full one, whose elements depend only on

the spherical distance of the point masses (and on the degree n

Due to the geometry of the data pattern, which is fully represented

in A , the matrix has a very special structure: A is a Toeplitz
nn

circulant matrix; (row k equals row k-I shifted one element to the

right, with the last element of row k-i wrapped around to the

first place in row k .) Therefore, A has only J distinctn
elements; (in our case even only int[(J+1)/2] due to the de-

pendence of the spherical distance.) It is very essential for the

following that circulant matrices are diagonalized under the dis-

crete Fourier transformation. Denoting the discrete Fourier trans-

form of A by the diagonal matrix A n
n n

A FAF , (4.7)n n

the diagonal terms are simply given by

(n) a (n) 2 MM j a O jm , m = O,1,...,J-1 , (4.8)

where a(n)} j=O,1, ..,J-I denote the elements of the firstwhre oj ,

row of A . The proof of equation (4.8) is simple; it relies on

the circulant property of A and on the orthogonality relationn
(4.6). The discrete form of Parseval's theorem with A asn

metric is given by

' TX Anx A-n (4.9)
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(Note that An  is the diagonal matrix of eigenvalues, F the

orthogonal matrix of eigenvectors of A ; X is the image ofn

W in the eigenvector system.) The discrete Fourier transformations

(4.3) and (4.7) are accomplished by the enormously powerful tool

of Fast Fourier Transform (FFT) (Brigham, 1974; Singleton, R.C.,

1968). (The CPU-time increases with J-inJ ; the constant multi-

plication factor is about 2.7. 10-sec for the Singleton-algorithm

on a UNIVAC 1100/81.) In view of this speed, the transformation

into the frequency domain does not pose any problems. The matrix

An  can be computed recursively using the relation (4.1); (actually

only half of the elements of the first row have to be calculated

because of the circulant character of A .) Parseval's theoremn
(4.9) gives immediately the desired degree variances (apart from

the factor 2n (n-1 ) 2( 2n+l) I

Sofar we have considered a regular data distribution restricted

to a single parallel. Let us now investigate the case of a regular

distribution on K parallels. Now the data vector consists of
=(k)

K subvectors I with J elements each. Analogously, the
2

symmetric matrix A can be subdivided into K submatrices of
2 ndimension J each. Each submatrix A(kk ) , which correspondsn

to row k combined with k' , is Toeplitz circulant due to the

geometry of the data pattern. Therefore, A is a symmetric blockn

matrix with Toeplitz circulant blocks. If the data pattern is

symmetric with respect to the equator, A is even persymmetric.
Transformin eac nuvco (k(k~k')
Tranformng ach ubvetorand each submatrixA ninto the frequency domain according to equ.(4.4) and (4.8) leads

to Parseval's identity with a block-diagonal eigenvalue matrix

An , corresponding to the block-circulant matrix A . As a mattern n

of fact, a persymmetry of A is also reflected by A . More de-
n ntails on that particular procedure are contained in (Colombo, 1979).
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5. MULTI-LAYER MASS DISTRIBUTIONS

We have seen in chapter 2 that a single-layer anomalous

mass distribution is neither able of modelling the observed

Earth's gravity field adequately, nor is it very realistic from

a geophysical point of view. Therefore, multi-layer models have

been proposed by numerous authors (Schwarz, 1977, 1981; Jordan,

1978; Heikkinen, 1981; Davenport, 1978). In the sequel we in-

vestigate the multi-layer mass distribution problem with an

emphasis on the statistics of the resulting anomalous gravity

field. In the same order as before, we consider first white

noise distributions and second discrete point mass models with

regular distribution.

Denoting the depths of the mass anomaly layers by D1

i = 1,...,L ), the eigenvalues of the integral kernel, which

is responsible for the transition from mass to gravity, are ob-

tained from (2.7),

(1) 4wG n-i riR = 2 2n+l1e '~ ' 1...,L(.1
n R 2T +

D,
with ai = 1 _ . The gravity anomaly power spectrum corre-

1 R
sponding to the white noise anomalous mass distribution at depth

DI is obtained by (2.10)

1 2M(1 ) 2
(1) 4irG1 0 (n-i) 2rig = -- 2 2l i(5.2)
n ~R 2 ] 2 2n+1 I

and the total power spectrum is obviously the sum of the indi-

vidual ones,
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L
gn= gn (5.3)

i=1

provided two mutually different mass layers are uncorrelated. The

total gravity anomaly covariance function is formally equal to

(2.11) with gn defined by (5.3),

C (t) = gnPnt

gg (t)gn

n=2

If the anomalous mass distribution is discrete and regular,

such that the data pattern is common to all levels, the disturbing

potential harmonic coefficients (3.3)" are represented in terms of

I L n
a m =2n-+1 illi i ' (5.4)

where U denotes the point mass (multiplied by the gravitational

constant G and divided by the mean Earth radius R ), which has

Qi as horizontal and R-D as vertical position. (Note that

il can be considered as the potential, which is generated by

that particular point mass on a ball with radius R and centered

at the point mass.) Analogously, the gravity anomaly coefficients

(3.10) are given by

I Ln-1
nmI 2n- - n (Q )  a (5.5)
ri n 1i=1 i=m ili I

For a specific degree n the last sum represents (apart from the

constant G/R 2 ) the weighted sum of mass points, which are located

on the same radius vector; the weights are given by the individual

depths. Denoting this sum by = W

• .
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(n) L --
U (A (5 .6)

the gravity anomaly degree variances c can be represented in

a similar form as in equation (3.13)',

2
(n-1) (n)T ((n)

c n- n-L A~ n. (5.7)Cn =2n+1 ni

All degree variances (for arbitrarily high n ) are theoretically

affected by all point masses. However, due to the weight factors

n deep point masses have practically no significant contribution

to high degree variances. Needless to say, the gravity anomaly

variance equals the sum of all degree variances.
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